If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8t^2+6t+1=0
a = 8; b = 6; c = +1;
Δ = b2-4ac
Δ = 62-4·8·1
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2}{2*8}=\frac{-8}{16} =-1/2 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2}{2*8}=\frac{-4}{16} =-1/4 $
| -2-4w=6w-8 | | 9y+20=y+28 | | 9(x-4)=6x | | -5(4c+3)=0 | | 3(2k-5)=66(k-4)+9 | | 11/3=x/44 | | 9=5x²+2x | | x+11-8=3 | | 14/3=x/6 | | 10/13=x/169 | | X=42x-50 | | 5h=342 | | X=42x-50=78 | | 15=9+x-2 | | 3(x−2)+7=2(x+3) | | 5x+2(8×-4)-9=88 | | 5y2−35=0 | | 4z+59=14z-41 | | 5h=-38(9) | | 2x-50=78 | | 5h/9=-38 | | P(x)=|5x-9| | | 5/9(h)=-38 | | 2(16g-4g+3)=0 | | -28+28+5/9(h)=-10-28 | | 2a^2=14400 | | 5×+4y=8 | | F(5)=4n+7 | | 2.8k=56 | | 28+5/9(h)=-10 | | x+8=15x+12=23 | | 4+z=-23(-26) |